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to us over the years.

All the world’s a stage,
And all the men and women merely players:
They have their exits and their entrances;
And one man in his time has many parts …

Shakespeare, As You Like It (1599)

We study the effect of a confining potential on systems that exhibit Hartree–Fock (HF) insta-
bilities, and thus admit broken symmetry (BS) HF solutions, by relying on the O2– and S2–

doubly-charged anions as model systems. We find that with the increasing strength of the
external harmonic confinement potential, W(r) = 1

2
(ωr)2 (with 0.0 ≤ ω < 0.2), the BS solu-

tions are systematically eliminated. We use extended, diffuse, doubly-augmented Gaussian
basis sets up to and including d-aug-cc-pV6Z, and find that the number and the character of
BS solutions exhibit significant basis set effects. These basis sets were further extended by
additional ghost basis functions, located away from the atomic center. The role of the elec-
tron correlation effects for the BS HF solutions was examined by the CCSD(T) method. In
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addition to modelling the confinement by the harmonic-like potential W(r), we also exam-
ined a more realistic “confinement”, realized by a grid of point charges modelling the crys-
tal structure of MgO. Again, we find that the HF instabilities and the implied BS solutions
disappear with the increasing magnitude of the model charges simulating the crystal envi-
ronment. At the same time, the O2– anion is energetically stabilized with respect to both the
O– anion and the neutral oxygen atom.
Keywords: Hartree–Fock stability; Broken symmetry solutions; Confined systems; Confining
potential; Correlation effects; CCSD(T), O2– and S2– anions; MgO crystal; Ab initio calcula-
tions.

During the past decade there has been a growing interest in the study of the
behaviour and properties of various atomic and molecular systems that are
immersed in an external potential field representing a spatial confinement.
This work was in turn stimulated by advances in semiconductor manufac-
turing processes and by the developments in nanotechnology. One type of
such systems is often referred to as quantum dots and quantum wires, or
as artificial atoms or molecules. The confinement may also be realized via
various nanocavities in mesoscopic objects, such as provided by molecular
cages or crystal latices (e.g., clathrates, fullerenes, nanotubes, zeolites, etc.),
but also by nanobubbles, as formed in liquid helium and other liquefied
inert gases.

Our interest in these systems has arisen from two rather diverse sources,
namely from an extensive work on confined systems carried out at the Max
Planck Institute for Astrophysics in Garching by Professor Diercksen and
his group1–5, aswell as an older work on the stability of highly charged neg-
ative ions6. Diercksen’s group developed appropriate codes (extended by
Sako to study confined systems) and investigated many aspects of confined
systems, including their electronic structure1, and various spectroscopic2,
electric3, dynamical4, and other5 properties. On the other hand, we were
particularly interested in a possibility that such a confinement may help to
stabilize otherwise unstable, electron-rich systems. For this reason we de-
cided to investigate the effect of a confining potential on a special class of
N-electron systems, in particular those whose Hartree–Fock (HF) solutions
are singlet-unstable, and for which there exist broken-symmetry (BS) solu-
tions in addition to the standard symmetry-adapted (SA) ones6.

Typical examples of atomic systems which exhibit instabilities and BS so-
lutions are multiply charged anions, i.e., neutral atoms or molecules with
additional electrons, as represented, e.g., by doubly negative anions6 such
as O2– and S2–. Although such structures have never been observed under
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normal conditions (see, however, ref.7; see also ref.8), and thus no experi-
mental data are available for them (see below), they are often postulated as
possible intervening – at least as formal – fragments9 (see also refs10) in the
analysis of a bonding capacity and strength of various polyoxometalates
(POMs). POMs constitute a huge class of metal–oxygen clusters, usually in-
volving Mo, W or V, and have many potential applications in as diverse
fields as catalysis, material science, and medicine (see, e.g., refs9,11). There
exists a vast literature, both experimental and theoretical, concerning these
compounds and a multitude of their exploitations is based on their ability
to bind one or several electrons while undergoing only a minimal structural
changes.

In fact, POMs represent typical host–guest supramolecular structures and
are sometimes formulated as clathrate-like structures. In the case of the
so-called Lindqvist anions12, it is precisely the anion O2– that represents
the central oxide ion, so that, for example, the Lindqvist-type structures
[M6O19]n– (n = 8 for M = Nb and Ta; n = 2 for M = Mo and W) are repre-
sented as a clathrate O2–@[M6O18](n–2)– or [W10O32]4– as O2–@[W10O31]2–.

In this connection we wish to recall an early formulation of the HF stabil-
ity conditions13, and of the issuing BS solutions, for a series of ten-electron
atomic systems6, as described by the LCAO-SCF method based on a mini-
mum basis sets of Slater-type atomic orbitals (AOs). Continuously varying
the nuclear charge Z from Z = 10 (the neutral Ne atom), to Z = 9 (the F–

ion), and, finally, to Z = 8, we reach a hypothetical doubly-negative oxide
ion O2–. Testing for the singlet stability13 of the resulting solutions, we
find6 that while the SA (i.e., spherically-symmetric, closed-shell, pure sin-
glet) solutions for Ne and F– are perfectly stable, thus representing a true
minimum on the mean-energy hypersurface, the SA solution for O2– is sin-
glet unstable, the instability onset arising at about Z ≈ 8.6. In fact, once we
reach O2–, we find several (essentially two, one triply and one quintuply de-
generate) negative eigenvalues in the singlet stability problem (of course,
the triplet or non-singlet instability arises even slightly earlier, see ref.6 for
details; however, we are interested here in spin-uncontaminated, pure-
singlet solutions). Following the direction of steepest descent at the station-
ary point as given by the corresponding eigenvectors of the stability prob-
lem, it was possible to generate BS solutions, one of an oblate and one of a
prolate type, referred to as the D and P solutions, according to the multi-
plicity of the corresponding root of the stability problem. The D-type solu-
tion, which is higher in energy and still singlet unstable was found earlier
in an ad hoc manner by Prat14 (see also ref.15). This solution leaves the 2p
orbitals with m = ±1 still degenerate, while all three 2p orbitals of the P-type
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solution have distinct orbital energies. It is this latter BS solution of the
P-type that is singlet stable and has the lowest energy6.

Now, at first sight, it seems surprising that stationary solutions of either a
SA or BS type for O2– exist at all. In fact, the instability of the SA solution,
and the existence of the lower-energy BS solutions, indicates the instability
of the regular solution having a spherical symmetry and may be interpreted
as a tendency of both electrons (since we insist on the closed-shell form of
the solution) to escape the nucleus, thus breaking the spherical symmetry.
The fact that we do find such solutions for O2– is thus clearly related to the
fact that we employ a finite basis set, which will not allow the electrons to
“escape”. Indeed, when we attempt to compute the SCF solution for O2– by
relying on the atomic codes that employ numerical integration of HF equa-
tions16, while enforcing the single-determinantal closed-shell form of the
wave function, we encounter convergence difficulties, since both excess
electrons try to populate a plane-wave-type orbital, indicating a tendency
to escape the anion17.

In general, we know that the electrostatic potential due to the nuclear
charge Z can stabilize an atomic system with N ≤ Z electrons and in most
cases with N = Z + 1 electrons, but hardly with two or more excess elec-
trons. Although there seems to be little doubt about the existence of such
ions, including O2– and S2–, in solid state crystal lattices, there is no evi-
dence of their existence in the gas phase. In spite of various claims to the
contrary (see ref.7), there exists a firm experimental evidence that no such
“long-lived”, doubly-charged negative atomic anions exist. For example,
using a double-focusing mass-spectrometer Spence et al.18 did not find any
evidence of the existence of such ions with the lifetime exceeding 10–5 s
and, more recently, Chang et al.19, carried out an ultrasensitive search
using a tandem-accelerator-based charge spectrometer with a high-current
cesium sputter source and found no positive evidence of such ions while
using a detection sensitivity [O2–]/[O–] ≤ 1.1 × 10–16.

In this paper we wish to demonstrate that the stability of such electron-
rich systems can be achieved not only by raising the nuclear charge, but
also by immersing them in an external potential field as mentioned earlier.
We shall thus investigate the behaviour of the electronically unstable sys-
tems O2– and S2– when passing from the system in vacuum to the system in
a specific surrounding environment. This environment can be represented,
for example, by a suitably selected external confining potential. The main
goal of this work is to demonstrate that in the presence of the external con-
finement, in our case effected by the spherically-symmetric, harmonic-type
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potential W r r( ) ( )= 1
2

2ω , the HF instabilities and BS solutions that are typical
for electron-rich systems, may be avoided. We will also study the O2– anion
within a more realistic confinement potential modelling the crystal lattice.
Our choice will be an electrostatic point charge potential20, in which the
behaviour of the O2– anion may approach that of a realistic environment,
in which the system may be stabilized enough so as to actually bind the
two extra electrons.

STABILITY OF HARTREE-FOCK SOLUTIONS

Basic Concepts

The HF approximation strives for the energetically optimal, independent-
particle-model (IPM) wave function by relying on the variation principle

E H( ) | | / |Φ Φ Φ Φ Φ≤ 〈 〈 〉 . (1)

In cases considered here, |Φ〉 represents a closed-shell, single antisym-
metrized product (or single-determinantal), trial wave function, built from
spin-orbitals | |A a〉 = 〉± . Moreover, we use a finite basis set to express one-
electron orbitals |a〉 as a linear combination of basis set atomic orbitals (AOs)
|φi 〉 (LCAO approximation), the LCAO coefficients representing the vari-
ational parameters. The HF equations that warrant the vanishing of the first
variation δ( ) ( )1 E Φ of the mean-energy functional (1),

δ( ) ( )|1 0E Φ Φ =Φ0
= , (2)

do not guarantee that their solution corresponds to an absolute or, in fact,
even to a local minimum on the energy hypersurface E( )Φ , but only that it
represents a stationary point. Moreover, these equations, being highly non-
linear, may possess a multitude of solutions21.

Although in the majority of cases the standard SCF solution, preserving
the symmetry of the Hamiltonian considered, does represent a bona fide so-
lution associated with the absolute energy minimum, there are many cases
where this is not the case, and where the relaxation of the symmetry
restrictions leads to a solution or solutions with a lower energy. This obser-
vation is the content of the well-known “symmetry dilemma”, first formu-
lated by Löwdin22. Clearly, the exact wave function |Ψ〉 must represent a
simultaneous eigenstate of both the Hamiltonian H and of all the operators
Λ k that commute with H. The operators Λ k describe the invariance of H
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with respect to various symmetries (spin, spatial, time-reversal, total elec-
tron number, etc.) and constitute an appropriate symmetry group or
groups. The requirement that the variational trial wave function |Φ〉 also
possesses these symmetries (i.e., that it is a simultaneous eigenfunction of
H and of the corresponding Λ k operators) represents an imposition of addi-
tional constraints on |Φ〉, leading to a constrained variational problem.
However, such constraints can only raise the energy, since they restrict the
available variational space. Thus, breaking one or more such symmetries
can lead to BS solutions with lower energy.

Most often it is the breaking of the total spin that can produce a lower-
energy unrestricted HF (UHF) solution of the different orbitals for different
spins (DODS) type. This is in fact always the case for open-shell systems due
to an imbalance between the up and down spins in the IPM determinant,
but the occurrence of UHF solutions for closed-shell systems is rather rare.
In fact, Koutecký was one of the first to describe such solutions23.

In order to ascertain that a given HF solution is associated with an energy
minimum, we have to evaluate the second variation of the energy func-
tional (1) or the Hessian δ( ) ( )2 E Φ at |Φ0 〉, and to check for its positive defi-
niteness. Of course, even when E( )Φ0 represents a true minimum, there is
no guarantee that this is an absolute minimum (see, e.g., refs24–26). The
general stability conditions were first formulated by Thouless27. The specifi-
cation of these conditions for closed-shell systems13 led to the introduction
of the concepts of the singlet and triplet (or non-singlet) (in)stabilities, and
to the formulation of the corresponding singlet and triplet stability condi-
tions. These concepts were later generalized to doublet stability conditions
for simple open shells28, as well as to other types of symmetry breaking (for
an overview and unification of various stability conditions, see refs25,26).

Basic Formalism

We next present a brief formulation of the working equations for HF stabil-
ity conditions in order to fix the terminology and outline the formalism
employed. The reader is referred to the original literature13 or to more re-
cent reviews25,26.

Labeling the generic, occupied, and unoccupied spinorbitals by capitals
I J K L, , , ,... , A B C, , ,... , and R S T, , ,... , respectively, and the corresponding
orbitals by the corresponding lower-case letters, we can express the N = 2n
electron closed-shell IPM wave function |Φ0 〉 as follows
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| | |{ ... } |{ , ,†Φ0 1 2 1 1

1

0〉 =








 〉 = 〉 =

=

+ −∏ X A A A a aA
A A

A

Ni

N

a a an n2
+ + − 〉,... , } (3)

where XI
† and XI designate the creation and annihilation operators as-

sociated with the spin orbital I i= + or I i= − , the superscripts + and – indi-
cating the spin-up or spin-down eigenstates of Sz, |0〉 represents a vacuum
state, and the curly brackets imply the antisymmetrization. According to
Thouless’ theorem27, an arbitrary single antisymmetrized product (IPM or
determinantal) wave function |Φ〉 that is not orthogonal to |Φ0 〉, can be ex-
pressed in the following intermediately normalized form

| exp( )|Φ Φ〉 = 〉C1 0 (4)

where C1 designates a monoexcitation operator

C c e e X XR
A

A
R

A
R

R A1 = =, † . (5)

Here, as in the following text, we assume the summation convention over
repeated indices.

It is not difficult to find the expression for the second variation of the
mean-energy functional, Eq. (1), (using, for example, a diagrammatic tech-
nique25)

δ( )
†

2 E =
C

C

A B

B A

C

C
(6)

where we defined matrices

C A B= c A BR
A

RS
AB

RS
AB, ,= = (7)

with matrix elements

A R f S B A B f A R S RB v ASRS
AB

a= 〈 〉〈 〉 − 〈 〉〈 〉 + 〈 〉| | | | | | | |

B RS v ABRS
AB

a= 〈 〉| | . (8)
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Here, the rows and columns are labeled by monoexcitation labels ( )R
A or ( )S

B ,
the subscript “a” implies the antisymmetrized two-electron integral, and
〈 〉I f J| | represents the matrix element of the Fock operator, i.e.,

〈 〉 = 〈 〉 − 〈 〉IJ v KL IJ v KL IJ v LKa| | | | | | (9)

〈 〉 = 〈 〉 + 〈 〉∑I f J I h J IA v JA a
A

| | | | | | (10)

For spin-independent electronic Hamiltonian

H h E v E E Ei
j

j
i

ik
jl

j
i

l
k

j
k

l
i= + −( ) [ ( ) ( ) ( )]0 0 0 0δ (11)

where now v jl v ikik
jl = 〈 〉| | and Ej

i ( )0 represents a spin-free unitary group gen-
erator

E e ej
i

j
i

j
i( ) ( ) (κ κ = , )κ= + −+

+

−

−

1 0 1 (12)

the matrix elements of A and B matrices become

A f f v vrs
ab

s
r

a
b

a
b

s
r

as
rb

sa
rb( ) ,κ δ δ δκ= − + −2 0

B v vrs
ab

rs
ab

sr
ab( ) ,κ δκ= −2 0 (13)

with the parameter κ referring to the singlet (κ = 0) and triplet (κ = 1) cou-
pling and, correspondingly, singlet and triplet (non-singlet) stability prob-
lem, namely

A B

B A

D

D

D

D
( ) ( )

( ) ( )

( )

( )

( )

( )
( , )

κ κ
κ κ

κ
κ

λ
κ
κ

κi

i
i

i

i

= = 0 1 . (14)

Note that this is a Hermitian eigenvalue problem, since A is hermitian
and B† = B. Further, for a standard HF-SCF solution, the matrix elements of
the Fock operator are diagonal and are given by the orbital energies �i =
〈 〉i f i| | ,
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f j
i

i ij= � δ . (15)

For a HF solution to be stable, all the eigenvalues must be positive, while
a negative eigenvalue implies instability, the corresponding eigenvector
providing the direction of the steepest descent at |Φ0 〉. Moreover, when A
and B are real, as is the case in most applications, the eigenvalue problems
(14) factorize into the “plus” and “minus” subproblems13, i.e.,

[ ( ) ( )] ( ) ( ) ( ), ( ) ( ) ( )A B E E E D Dκ κ κ λ κ κ κ κ κ± = = ±± ± ± ±
i i i i i i . (16)

MODEL CONFINING POTENTIALS

During the last decade a number of authors1–5,29–31 studied various molecu-
lar systems trapped in different types of confining potentials. Here we shall
employ two different types of confinement: via a spherical, harmonic-
oscillator-type potential that is centered on the nucleus, and via a potential
that is produced by a set of alternating point charges localized around the
system and forming a cubic grid.

Spherical Harmonic-Oscillator-Type Confining Potential

The potential used in this study is represented by an N-electron interaction
potential W r( ) of the spherical, harmonic-oscillator kind1–3, defined by the
sum of one-electron contributions w ri( ),

W r w ri
i

N

( ) ( )=
=
∑

1

(17)

where, in general, the one-particle potential w ri( ) is represented via a linear
combination of powers in electron coordinates

w r t bi t
n

t
n

t x y z

t t

i i i

( ) ( )
, ,

= −+

=
∑1

2
1 2ω (18)

with r x y zi i i i= , , . Choosing the parameters as follows: n n n nx y z= = = =1,
b b b bx y z= = = =0, and ω ω ω ωx y z= = = , the potential (18) results in an
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isotropic, harmonic-oscillator potential that is centered at the origin of the
coordinate system, i.e.,

w r ri i( ) = 1
2

2 2ω . (19)

The spherically symmetric shape of such a potential is useful as a model po-
tential for a confinement of atoms or molecules by external surrounding
environment (as, e.g., in zeolites, fullerenes, nanotubes, or quantum dots).
One should keep in mind, however, that – in contrast to real systems – such
potential represents only a crude model in view of its infinitely high energy
barrier.

Cubic Point-Charge Grid

Another, more realistic type of a confining potential is represented by a
specific distribution of point charges around the studied system. In our
case, we employ a set of alternating point charges ±q that are located in the
nodal points of a cubic grid, having the cell constant l, representing the dis-
tance between charges, while the studied anion is located in the center of
the grid. Our model consists of five layers, each with 5 × 5 = 25 alternating
point charges, with only the central layer having 24 point charges, since
the studied system is located in the center of the cube. Point charges in the
six positions closest to the center have a sign opposite to the studied system
(i.e., in our case +q). This is the simplest model that preserves both the neu-
trality of the grid and the systematic alternation of positive and negative
charges in the grid. Altogether, it consists of 4 × 25 + 24 = 124 point
charges, and the overall charge of the entire model is the same as the
charge of the unconfined system.

We note that this type of a grid is often used as the simplest model that
simulates the crystal environment: see, e.g., ref.20. The cell constant l of
the cubic grid that was used in our study was taken from the MgO crystal,
namely l = 3.976 a.u.

RESULTS AND DISCUSSION

The analysis of the stability of HF solutions follows the work of Čížek and
Paldus13 (for an overview of more recent developments, see refs25,26), as im-
plemented in the system of computer codes MOLCAS, version 5.4. All re-
sults presented below were obtained using MOLCAS 5.4 program package32.
In CCSD(T) calculations, 1s electrons were kept frozen.
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Symmetry-Adapted and Broken-Symmetry Solutions for O2–

Doubly negative charged oxygen atom is a system with the negative elec-
tron affinity, i.e. the second electron is not bound to O–. The HF solution
for the O2– anion exhibits various instabilities, implying the existence of BS
solutions that were already described 20 years ago6. With the minimum
STO basis set6, one finds three triplet and two singlet instabilities, the third
negative root of the triplet instability problem being identical with the low-
est root of the singlet type. The latter is triply degenerate, while the second
negative singlet instability root is quintuply degenerate. By following the
direction implied by the eigenvectors corresponding to the negative singlet
instability eigenvalues, two distinct types of BS solutions can be found.
These were referred to as the P- and D-type BS solutions6, respectively, ac-
cording to the degeneracy of the corresponding eigenvalue of the stability
problem. The D-type solution is characterized by the degenerate negative
p-orbital energies �pm for m = ±1 and a positive �p0, while for the P solution,
all three orbital energies �pm are different, one of them being again positive.

In the following we shall rely on standard, augmented (aug) correlation-
consistent (cc) basis sets33. Moreover, we shall augment these standard basis
sets by off-center basis functions. We note that the SA solutions for the O2–

system, as obtained with these basis sets, exhibit only the quintuple degen-
eracy of the negative eigenvalues of the Hessian and the degeneracy of the
2p orbital energies with m = ±1. We can thus use the same notation as in
ref.6 and label the BS solutions associated with the quintuply degenerate
singlet instability negative eigenvalues as the D-type solutions. Such solu-
tions are likely to be unstable to the (total) spin-symmetry breaking, im-
plying that a lower energy UHF solution (of the DODS type) may exist.
However, we are interested here only in spin uncontaminated pure-singlet
solutions.

Basis Set Dependence of SCF Solutions for O2–

When searching for HF solutions of the O2– anion, the SCF procedure leads
to two distinct solutions, depending on the trial wave function employed.
One solution is a standard (space and spin) SA solution with triply degener-
ate 2p orbitals. This solution results when we employ as the initial approxi-
mation orbitals that are typical of the 1S state of the O2– anion. In order to
access the second solution having a BS, we simply break the degeneracy of
the 2p orbitals. In our approach we have employed as the starting orbitals
those characterizing the 1D excited state of the neutral oxygen atom, with
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the occupancy 1 2 2 22 2 2 2s s p px y . Using such starting orbitals, we were able to
converge to a BS solution of the O2– anion.

O2– in Standard, Anion-Centered Basis Sets

When  we  employ  standard m-tuply  augmented,  correlation-consistent
m-aug-cc-pVXZ basis sets33, we find many similarities to the results ob-
tained with the minimal STO-type basis6. Yet, both descriptions are quite
different in several aspects. Generally, we find a significant dependence of
the studied quantities, such as orbital energies or HF stability roots, on the
quality of the basis set employed, in spite of the fact that we use a rather
large basis sets. In Table I we summarize the 2p orbital energies for the
isoelectronic F– and O2– anions. For F–, whose HF solutions are singlet-
stable, the orbital energies �2p are completely converged (to within the
required accuracy) already at the d-aug-cc-pVXZ basis set level with X = 4 or 5.
This is not the case for the O2– anion, in which case we observe non-
negligible differences in the �2p orbital energies that are associated with the
SA solutions even for as large basis sets as those with X = 4, 5, and 6. For BS
solutions, the values of the �2p orbital energies vary even more widely with
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TABLE I
Orbital energies (in a.u.) of the O2– and F– anions for symmetry-adapted (SA) and broken-
symmetry (BS) solutions, as obtained with different Gaussian-type basis sets.

Anion Basic set

SA BSa

�2px = �2py = �2pz �2px = �2py �2pz

F– d-aug-cc-pVQZ –0.1818 – –

d-aug-cc-pV5Z –0.1818 – –

O2– d-aug-cc-pVQZ 0.1171 –0.1719 0.1415

d-aug-cc-pV5Z 0.1126 –0.1937 0.1337

d-aug-cc-pV6Z 0.0973 –0.2564 0.1108

O2– C-STOb 0.1254 –0.1318 0.1540

H-STOb 0.0656 –0.3101 0.0770

a BS solutions for O2– were obtained using the occupied orbitals of neutral oxygen
1 2 2 22 2 2 2s s p px y as the initial guess. No BS solutions were found for F–. b Ref.6



the size of the basis set employed, and are far from reaching the complete
basis set (CBS) limit. A similar behaviour was observed earlier6 for the two
distinct basis sets, labeled as C and H bases, which led to a significant dif-
ference between the orbital energies as well (see Table I).

The role played by the basis set is even more evident when analyzing the
HF stability roots (Table II). For the aug-cc-pVQZ basis, we do not find any
negative roots in the singlet instability problem, while the triplet problem
yields two negative roots. Only when we include more diffuse basis func-
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TABLE II
SCF total energies (in a.u.) and the negative eigenvalues of the singlet (in bold face) and
triplet stability problems, classified by the irreps of the D2h point groupa, for the symmetry-
adapted solution of O2–, as obtained with different Gaussian-type basis sets

Basis set SCF energy ag b1g b2g b3g

aug-cc-pVQZ –74.46201535 –0.07745

–0.01340 –0.01340 –0.01340 –

–0.01340

d-aug-cc-pVQZ –74.48696261 –0.05517 –0.05517 –0.05517 –0.05517

–0.05517

–0.15594

–0.11059 –0.11059 –0.11059 –0.11059

–0.11059

d-aug-cc-pV5Z –74.48934618 –0.06018 –0.06018 –0.06018 –0.06018

–0.06018

–0.15966

–0.11510 –0.11510 –0.11510 –0.11510

–0.11510

t-aug-cc-pV6Z –74.51161754 –0.10521 –0.10521 –0.10521 –0.10521

–0.10521

–0.19699

–0.15813 –0.15813 –0.15813 –0.15813

–0.15813

a For computational reasons, only the Abelian subgroup D2h of the rotation group is em-
ployed, with the principal axis oriented along the z-axis. See the text for details.



tions in the doubly augmented d-aug-cc-pVQZ basis set the SA HF solution
becomes singlet-unstable. Further enlargement of the basis set up to and in-
cluding the t-aug-cc-pV6Z basis does not bring about any qualitative
changes (Table II), even though the absolute value of the instability roots
and of the total energies increases with the size of the basis set employed.
However, we can expect a much more profound dependence on the basis
set size for BS solutions, since they are characterized by orbitals with an
electron distribution localized far apart from the nucleus6, so that their
proper description requires more extensive and very diffuse basis sets.

In summary, F– and O2– anions exhibit a similar behaviour to that found
earlier with a minimum STO basis set6. However, no basis set used here
yields singlet and triplet triply degenerate instability roots leading to the
P-type HF solutions. Thus, with the basis sets employed here, we were able
to find only the D-type BS solutions.

Externally Confined O2– and S2– Anions

An external confining potential in which the anions are submerged has a
profound influence on the eigenvalues of the stability problems. The de-
pendence of the negative eigenvalues λk corresponding to the singlet-
stability problem as a function of the confining potential ω for the O2–

anion is shown in Fig. 1. With the increasing strength of the confining po-
tential, the negative eigenvalues gradually disappear. Quintuply degenerate
singlet instability root is the first one to turn positive at ω ≈ 0.04. For higher
values of ω, only triplet-type HF instabilities remain. Further increase in the
strength of the confining potential leads eventually to the disappearance of
both quintuply degenerate and nondegenerate triplet instabilities. For ω ≥
0.09 there are no negative eigenvalues in either the singlet or triplet insta-
bility problem, implying disappearance of BS solutions, at least BS solutions
of the type implied by the singlet instability. In the case of S2– (Fig. 2), the
system is more stable in terms of the HF stability thanks to the higher nu-
clear charge6. Negative eigenvalues of the Hessian have smaller absolute
values and disappear earlier. The S2– anion becomes stable for ω ≈ 0.04.

O2– with Off-Center Ghost Basis

It was shown earlier6 that the p0 orbital of the D-type BS solution has two
maxima in the radial charge distribution. The second one is in the region of
about 10–12 a.u. Considering this fact and our finding that the BS solutions
are very sensitive to the choice of the basis set, we decided to extend our
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FIG. 1
Negative eigenvalues λ of the singlet and triplet stability problems of the O2– anion as a func-
tion of the confining potential strength parameter ω: 5× degenerate singlet instability (�), 5×
degenerate triplet instability (�), nondegenerate triplet instability (�). Obtained using the
d-aug-cc-pV5Z basis set

FIG. 2
Negative eigenvalues λ of the singlet and triplet stability problems for the S2– anion as a func-
tion of the confining potential strength parameter ω: 5× degenerate singlet instability (�), 5×
degenerate triplet instability (�), nondegenerate triplet instability (�). Obtained using the
d-aug-cc-pV5Z basis set



bases by supplementing them with additional ghost basis functions, located
away from the anion nucleus. A similar idea of a better description of the
region away from the center was employed for the O2– anion by Hogreve15.
An ultimate goal is thus to improve the diffuse part of the standard, aug-
mented, nucleus-centered basis sets in such a way as to enable a more de-
tailed and consistent analysis of HF instabilities and of corresponding BS
solutions.

For this purpose, we extended our basis sets by two types of ghost basis
functions. The first type is obtained by placing additional basis functions at
a distance ±Rz from the anion nucleus along the z-axis. Such a basis set ex-
tension leads, of course, to an asymmetric basis set that primarily improves
the description of the occupied 2pz orbital. The use of such an asymmetric
basis set leads automatically to BS solutions, independently of whether we
use the 1S-type wave function of O2– as a starting approximation or the 1D
wave function of the oxygen atom. We note that this type of basis set ex-
tension also makes it possible to exploit standard quantum chemistry codes
for a study of certain aspects of HF instabilities, obviating the necessity of
writing new programs. For the same reason we employ only the Abelian
subgroup D2h of the rotation group to factorize and classify the stability
subproblems.

The second type of a basis set extension via off-center basis functions
strives to improve the standard, nucleus-centered basis sets, while preserv-
ing the symmetry of the problem. In this case the ghost functions are lo-
cated in all three Cartesian directions, thus improving the 2px, 2py, 2pz
functions in the same manner. We refer to such bases as the symmetric,
ghost-orbital basis sets. The use of such out-of-center ghost functions is, in
fact, a common practice in a number of quantum chemical applications.

BS Solutions for O2– Using an Asymmetric Ghost-Orbital Basis Set

In the simplest case, we add to our standard basis external basis functions,
consisting of an sp set of aug-cc-pVQZ functions, and position them along
the z-axis at the distance ±Rz from the origin, where our anion is located. In
this way we generate a BS solution by virtue of the basis set asymmetry. For
a system whose HF solutions are stable, we expect the asymmetrically
added functions to improve the description of occupied orbitals, the effect
monotonically abating with the increasing distance Rz along the z-axis.
This is, for example, the case for F–, shown in Fig. 3. However, for O2–, we
find a much more interesting behaviour, as seen in Fig. 4. Here we observe
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FIG. 3
SCF energy E of the symmetry-adapted solutions for the F– anion obtained with an asymmetric
ghost-orbital basis set (see the text for details) as a function of the distance ±Rz along the z-axis
where the ghost orbitals are located. The ghost-orbital basis consists of the aug-cc-pVQZ basis
on F– augmented by the 13s6p/7s6p contracted functions which represent a part of the
aug-cc-pVQZ basis set of oxygen. These supplementary basis set functions serve as the
off-center (ghost) functions

FIG. 4
SCF energy E of the broken-symmetry solutions for the O2– anion obtained with an asymmet-
ric ghost-orbital basis set (see the text for details) as a function of the distance ±Rz along the
z-axis where the ghost orbitals are located. The ghost-orbital basis consists of the aug-cc-pVQZ
basis on O2– augmented by the 13s6p/7s6p contracted functions which represent a part of the
aug-cc-pVQZ basis set of oxygen. These supplementary basis set functions serve as the
off-center (ghost) functions



a non-monotonic energy dependence on Rz for the D-type BS solution. The
curve shown in Fig. 4 exhibits several minima, the number of which de-
pends on the nature of the ghost basis employed. First part of the curve, up
to about Rz ≈ 3–4 a.u., might be due to similar effects as found for F–, and
could be avoided via a procedure akin to the BSSE (basis set superposition
error) correction. This is, however, difficult to accomplish, since we were
unable to generate SA solutions up to Rz = 30 a.u. Nonetheless, the part of
the curve for Rz ≤ 30 a.u. demonstrates an interesting behaviour of the
D-type BS solutions. Localization of the remote electron density maximum
in the p0 orbital seems to prefer several specific Rz distances. The part of the
curve up to about Rz ≈ 30 a.u. may thus be viewed to represent an escape of
p0 electrons from the oxygen anion. Comparing the absolute values of
the energy of the SA solution for O2–, as obtained with the standard
aug-cc-pVQZ basis set (Table II), with that calculated in the same basis sup-
plemented by the ghost functions located at distances larger than 30 a.u.
along the z-axis (see Fig. 4), implies the absence of any significant interac-
tion of the ghost functions with the basis set centered at the nucleus.

It is also interesting to examine the effect of confinement of varying
strength on the energy dependence of BS solutions as a function of the
ghost orbital location given by Rz. This effect of the spherical, harmonic-
type confinement, whose strength is characterized by the parameter ω, on
both the SCF and CCSD(T) energies of O2–, is shown in Figs 5 and 6, re-
spectively. The curve corresponding to ω = 0.0 is the same one as that in
Fig. 4. When ω is switched on, we observe significant changes in the shape
of the energy dependence on Rz. As may be expected, the region of the
curve representing the localization of p0 ≡ pz electrons away from the nu-
cleus is rapidly smoothed out, since the spherical, harmonic-type confine-
ment disfavours the escape of an electron to regions of space far from the
nucleus. With the increasing strength of the confining potential, also the
other minima on the energy curve systematically attenuate, and for large
enough ω values, only SA solutions represented by a plateau in Fig. 5 can
exist. When we account for the correlation effects via CCSD(T), the shape
of the energy dependence on Rz for ω = 0.0 is modified, replacing, or at
least suppressing, some of the minima. Nonetheless, a non-monotonic
character of this dependence remains unchanged. The general picture of
the disappearance of BS solutions with the increasing strength of the con-
fining potential remains the same at the CCSD(T) level (see Fig. 6).
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FIG. 6
Total CCSD(T) energies E of the broken symmetry solutions for the O2– anion as a function of
the distance ±R along the z-axis where the additional auxiliary out-of-center basis functions
are located, for different values of the confining potential strength parameter ω. The asymmet-
ric ghost-orbital basis consisted of the aug-cc-pVQZ basis set on O2– and of the 13s6p/7s6p
contracted functions from the aug-cc-pVQZ basis set of oxygen as the off-center (ghost) func-
tions. See the text for details

FIG. 5
Total SCF energies E of the broken-symmetry solutions for the O2– anion as a function of the
distance ±R along the z-axis where the additional auxiliary out-of-center basis functions are lo-
cated, for different values of the confining potential strength parameter ω (0 ≤ ω ≤ 0.06). The
asymmetric ghost-orbital basis consisted of the aug-cc-pVQZ basis set on O2– and of the
13s6p/7s6p contracted functions from the aug-cc-pVQZ basis set of oxygen as the off-center
(ghost) functions. See the text for details



BS Solutions for O2– Using a Symmetric Ghost-Orbital Basis Set

We shall now briefly describe another type of HF solutions for O2– that
were obtained with basis sets symmetrically extended by off-center ghost
functions. Thus, the additional ghost functions are located along the three
Cartesian axes x, y, and z at the same distance ±R ≡ ±Rx = ±Ry = ±Rz. The ba-
sic characteristics for three different types of HF solutions obtained with
such a basis set are described in Table III. The simplest case is represented
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TABLE III
SCF total energies (in a.u.) and the negative eigenvalues of the singlet (in bold face) and
triplet stability problems for the symmetry-adapted (SA) and broken-symmetry (BS) solutions
of O2–, as obtained with the symmetric ghost-orbital basis seta (the off-center basis functions
were located 11.0 a.u. from the origin along the x, y, and z axes)

Solution SCF energy ag b1g b1u b2g b3g

SAb –74.47071385 –0.02530 –0.02924 –0.02924 –0.02924

–0.02530

–0.12226

–0.07982 –0.07398 –0.07398 –0.07398

–0.07982

BSb –74.48586154 –0.01835 –0.02078 –0.02078

–0.01684

–0.24980 –0.06458 –0.09611 –0.09611

–0.01870 –0.01750 –0.01750

–0.01687

BSc –74.49453699 –0.22379

–0.10997

–0.10997

–0.02700

–0.02151

–0.02151

–0.01683

–0.01683

a The symmetric ghost-basis set consists of the d-aug-cc-pV5Z basis set on the O2– anion and
of the 13s/7s contracted functions from aug-cc-pVQZ basis of oxygen as the off-center
(ghost) functions. b SA and BS solutions were computed using the D2h point group as the
symmetry group. For BS solutions, the occupied orbitals 1 2 2 22 2 2 2s s p px y of the neutral oxygen
atom were employed as the initial guess. c BS solution computed using the occupied orbitals
1 2 2 22 2 2 2s s p px y of the neutral oxygen atom without invoking any symmetry.



by the SA solution. We classify the negative roots of its singlet and triplet
stability problems by the irreducible representations (irreps) of the D2h
point group (taking the z-axis as the principal axis). For the SA solution, the
negative roots are found in the totally symmetric as well as in other irreps.

Focusing our attention on the singlet-type instabilities implied by the
negative roots appearing in the totally symmetric irrep, we can obtain BS
solutions that preserve both the space (dihedral) and spin symmetry. This
yields a special type of quasi-symmetric BS solution, which has lower energy
than the standard SA solution and is characterized by the energetically-split
2p set of orbitals. Such solution possesses several characteristic features of
BS solutions, even though it is not associated with a true energy minimum,
but only with a stationary point. It preserves the singlet spin multiplicity,
but has a negative root in the singlet stability problem associated with
other than totally symmetric irrep.

When we remove singlet instabilities in all irreps, we get a real BS solu-
tion preserving the singlet character with even lower HF energy than the
just mentioned SA and BS ones. This solution possesses only triplet-type in-
stabilities. In other words, all the pure singlet BS solutions we find may be
still triplet-unstable. Nonetheless, the spatial symmetry of this solution has
only C1 symmetry (i.e., its symmetry is lowered from D2h to C1), and the
corresponding orbitals represent a real mixture of basis functions belonging
to different irreps.

Further lowering of the HF energy would thus be only possible by break-
ing the spin symmetry, leading to a spin-contaminated UHF solution. Since
our interest is in pure singlet solutions, we wish to stay within the RHF
framework, and do not explore here UHF-type solutions.

Immersion of O2– in a Cubic Grid

We simulate the external potential generated by the MgO crystal by a grid
of point charges with alternating signs that are located at the atomic cen-
ters in the crystal. Even though this model potential involves only elec-
trostatic interactions, it can provide a useful insight concerning the
stabilization of the O2– anion embedded in the crystal. It is important to
note here that the inclusion of correlation effects is essential in this case,
since the one-electron picture leads to an incorrect description of relative
energies of the free (unconfined) neutral atom and its singly charged anion.
Indeed, the energy of atomic oxygen at the SCF level with vanishing point
charges |q| = 0 (i.e., of the free atomic oxygen) is lower than the energy of
the O– anion, implying negative electron affinity, which is obviously incor-
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rect. For this reason we present only CCSD(T) results for the oxygen atom
and its singly and doubly charged negative ions.

As can be seen from Fig. 7, the total CCSD(T) energy of the singly
charged O– anion is lower than the energy of the neutral atom, yielding the
electron affinity (EA) of 1.4309 eV (in the d-aug-cc-pV5Z basis). This value
agrees very well with the experimental EA 1.4611 eV 34. When q = 0, the en-
ergy of O2– is higher than the energy of either the oxygen atom or the O–

anion. When we increase the magnitude of point charges forming the grid,
the energy of the O2– anion decreases faster than does the energy of O–,
while the energy of the neutral oxygen atom remains almost constant with
the variation of |q|. For |q| ≈ 0.2, the energy curve for O2– crosses that for the
atomic oxygen, and for values of the point charge |q| ≥ 0.75, the O2– anion
becomes more stable than O–. This implies that the extra two electrons are
now bound to the oxygen nucleus.

The same trend is reflected in the behaviour of the orbital energies. For
|q| = 0.66, the orbital energy of the 2px,y,z orbitals becomes negative
(–0.0031 a.u.) and further decreases with the increasing charge |q|. The de-
pendence of the negative eigenvalues of the Hessian on |q| is similar to that
for the confinement due to the spherical, harmonic-oscillator potential ω
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FIG. 7
Total CCSD(T) energy E of the O2– (�), O– (�), and O (�) systems, immersed in the 5 × 5 × 5 cu-
bic grid of point charges ±q as a function of the absolute value of the point charge |q|, obtained
with the d-aug-cc-pV5Z basis set of oxygen. See the text for details



shown in Fig. 1. Negative eigenvalues that are associated with a non-
degenerate triplet instability appear for |q| lower than 0.60. For point
charges larger than 0.60, no BS solutions for O2– can be found.

Besides focusing on the energy of the oxygen atom and its O– and O2–

ions, we have also calculated the dipole polarizabilities α of the O2– anion
as a function of |q|. With increasing |q| of the point charges forming our
grid, and the cell constant defined in Spherical Harmonic-Oscillator-Type
Confining Potential, the polarizability α decreases and approaches the
value of 46.0 a.u. We note here that the dependence of α on the parame-
ters, and the shape of the cubic grid simulating the crystal structure of MgO
were studied earlier by Domene et al.20. Our results indicate that the analy-
sis of BS solutions in a general confinement can contribute to our under-
standing of the behaviour and nature of negatively charged anions in
crystals and other environments. A study of polarizabilities of different
anions submerged in a point charge grid, as well as in more general confin-
ing potentials, will be presented elsewhere.

CONCLUSIONS

In spite of the fact that in classical electrodynamics a conducting sphere
can support an infinitely large electric charge35, there are severe limitations
on charge accumulation in a submicroscopic quantum world. Although
most atoms can form stable, singly charged anions, there has been much
controversy concerning the existence of long-lived (>10–6 s) doubly charged
negative ions in the gas phase. In contrast to several claims to the contrary,
at least for some heavier atoms7, there seems to be a unanimous agreement
that no such long-lived atomic dianions exist (cf., however, ref.8 concern-
ing molecular dianions).

Yet, the standard quantum chemical ab initio models, at both HF and
correlated levels, yield bona fide solutions for such systems. Trying to ob-
tain such HF solutions via numerical integration approaches16 leads, how-
ever, to the convergence problems17. This contrast is not difficult to
understand, since the analytical LCAO SCF approaches employ a finite basis
set that defines a specific ab initio model and that prevents the electrons
from “escaping” from the system. For this reason, the existence of BS solu-
tions for atomic dianions with a lower energy than the ubiquitous SA solu-
tion, as is the case for the anions O2– and S2– examined in this paper, is an
indication of a tendency of electrons to leave the centrosymmetric struc-
ture. Another evidence of this tendency is the fact that in all such BS solu-
tions at least one occupied orbital has a positive energy. Moreover, we
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observe large changes in both the orbital energies and the roots of the sin-
glet stability problem with the size of the basis set employed, indicating
again a tendency of the superfluous electrons to stay as far away from the
nucleus as the given model permits. Of course, restricting the trial wave
function to a doubly-occupied, closed-shell determinantal form implies
that both electrons of a dianion will have a tendency to leave.

These facts can be regarded as an indication that the HF instability and
the existence of BS solutions for such systems – which, at least in principle,
may be a purely formal indication of the inadequacy of the model em-
ployed – points in fact to the process referred to as a spontaneous symmetry
breaking. Indeed, examples of both alternatives are known. For example, in
the case of the allyl radical, we find doublet instability28 of the restricted,
open-shell HF (ROHF) solutions even when using rather large basis sets36.
However, in this case the symmetry breaking points out to the inadequacy
of the IPM, and a multireference treatment will restore the symmetry. On
the other hand, the symmetry breaking in cyclic polyenes CnHn, which may
be regarded as modelling long polyenic chains or polyacetylene, leads to BS
charge density wave solutions, which clearly imply the bond-length alter-
nation in real systems (see, e.g., refs25,37).

In this paper, we have extended an earlier study of the HF stability of O2–

that relied on a Slater-type minimum basis sets to large standard Gaussi-
an-type bases. Moreover, when extending these standard nucleus-centered
basis sets with off-center ghost orbitals, in either a symmetric or an asym-
metric manner, we find a clear tendency to form BS solutions and the
above mentioned tendency to system dissipation. Nonetheless, as pointed
out earlier, the doubly negative ions, such as O2–, are often postulated – at
least formally – in various inorganic complexes and crystals. Clearly, their
existence requires a suitable environment that would stabilize such other-
wise highly unstable systems.

We have thus examined the stability of HF solutions, as well as the exis-
tence of BS solutions, both at the HF and correlated level, in the presence of
confining potentials. By relying on either the spherical, harmonic confine-
ment or on the immersion of O2– in a crystal lattice as modelled by a grid of
point charges, we find that indeed such electron-rich systems can be stabi-
lized already by a moderately strong confinement. As a test calculation, we
have also determined the polarizability of the system in the crystal lattice.
It would be certainly of interest to explore in greater detail such properties
as the polarizability and hyperpolarizability, as well as other properties of
such confined systems, which we hope to pursue in the future.
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